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Modelling of a coiled tubular chemical reactor
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Abstract

First order reactions in laminar Newtonion and non-Newtonion fluids in coiled tubes have been analyzed for high range of Dean numbers
(NDe ≤ 250). Process parameters which govern the secondary flow and the reaction parameter on the performance of coiled tube chemical
reactor are systematically examined. It is interesting to observe that the phenomenon of covective diffusion with reaction in coiled tube
can be simulated. Numerical calculations show the effect of process parameter modelling the rection parameter (α), dimensionless axial
distance and power law index (n). The performance of the coiled tube reactor is compared with plug flow and laminar flow reactors.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Curved configurations of circular tubes such as partial
coils (bends), and helical coils are often used in industry.
The secondary flow which is characteristic of a curved tube
causes (i) a higher axial pressure gradient, (ii) a higher crit-
ical Reynolds number for transition to turbulent flow, (iii) a
residence time distribution that more closely approximates
plug flow and (iv) relatively high average heat and mass
transfer rates per unit axial pressure drop especially for
fluids with high Prandtl and high Schmidt number. Because
of these advantages, curved tube are frequently used as heat
exchangers [1], chemical reactors [2–4], reverse osmosis
unit [5,6], and coiled membrane blood oxygenators [7,8].
They also serve as conceptual modes of physiological phe-
nomena such as the disease mechanism of atherosclerosis
[9], the performance of artificial respiration and the flow of
soluble materials through lung and blood vessels [10–14].

The study of isothermal convective diffusion of New-
tonian and non-Newtonian fluids flowing through curved
tubes with reaction is of both academic interest and indus-
trial relevance. Since most of the industrial chemicals and
many fluids in the food, polymer processing and biochemi-
cal industries under go mass transfer with chemical reaction
process either during preparation or in their applications,
the present study focuses on understanding the physics of
the chemical reaction in coiled tube systems which will be
useful in the design of such systems.
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The problem of convective diffusion with reaction in
Newtonian and non-Newtonian fluids flowing through a
straight tube has been well studied in the literature. Cleland
and Wilhelm [15] studied both experimentally and theo-
retically liquid phase, first order, homogenous chemical
reactions in a tubular reactor under isothermal conditions.
The Newtonion fluid was assumed to be in laminar flow,
and axial diffusion was assumed. The convective diffusion
equation was solved numerically. Lauwerier [16] inves-
tigated the same problem as Cleland and Wilhelm [15]
but adopted a different solution technique an eigen func-
tion expansion approach in the region far away from the
entrance of the reactor and a Leveque [17] type of ap-
proximation close to the entrance. In the former case, the
classical Sturm–Liouville type of eigen value problem was
obtained and Lauwerier [16] presented an asymptotic so-
lution valid for large eigen values, Hsu [18] obtained the
first 12 eigen values and eigen functions by numerically
integrating the ordinary differential equations. Power-law
and Pradtl–Eying fluids were considered by Homsy and
Strohman [19]. The resulting eigen function equation was
solved by the Galerkin method. The simple closed form
analytical solution using Galerkin technique for convective
diffusion with a homogeneous first order reaction in the
bulk and a heterogenous reaction at the reactor wall in a
Newtonian and non-Newtonian laminar flow tubular reac-
tor was given by Nigam et al. [20] and Nigam and Nigam
[21,22]. Recently, Adeniyi [23] developed the analytical
solution for the convective diffusion of power law fluids
in parallel plates and tubular reactor with first order single
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Nomenclature

a radius of the tube
b radius of the curvature of the tube
c dimensionless concentration
C concentration
CB bulk concentration
C0 initial concentration
dt diameter of the tube
Dm molecular diffusion coefficient
K first order homogenous reaction rate constant
n power law index
NDe Dean number,NRe/

√
λ

NRe Reynolds number [NRe = (dnt W
2−n
a ρ/µp]

NSc Schmidt numbers as defined in Eq. (4)
r non-dimensional radial coordinate
R dimensional radial coordinate
u, v, w non-dimensional velocities

in r, θ , φ, respectively
U, V, W dimensional velocities

in R, θ , φ, respectively
Wa dimensional average velocity

in curved tube

Greek letters
α Ka2/Dm (dimensionless homogeneous

reaction parameter)
δ geometric parameter defined in Eq. (4)
φ axial coordinate
λ curvature ratio (b/a)
µp consistency index
θ azimuthal coordinate
ξ dimensionless axial distance (λφ/NReNSc))
ρ density of the fluid

homogenous reaction in the bulk and a catalytic reaction at
the wall.

Although coiled tubes have been used rather commonly
as chemical reactors in industries, there have been very few
prior studies where the complete problem of convective dif-
fusion with reaction in coiled tube has been examined. Most
of the studies appearing in the literature on coiled tubes
confine to the residence time distribution and axial dis-
persion [24–26,39,40] and [27,28]. The state-of-the-art re-
view on the RTD and axial dispersion in straight and coiled
tubes was reported by Nigam and Saxena [29]. Such stud-
ies have been helpful in describing the performance of a
coiled tube reactor in terms of a lumped parameter dis-
persion number but this does not provide information on
the detailed spatial concentration distribution. Southwick
and Seader [3] provide an elegant experimental demon-
stration of the advantage of secondary flow in enhancing
the rate of reaction. To the best of our knowledge, only
one theoretical study of Mashelkar and Venkatasubramanian
[30] has been reported in the literature to understand the

influence of secondary flow on convective diffusion with re-
action. They analyzed the influence of secondary flow on
the spatial concentration distribution as well as the bulk av-
erage concentration for first order reaction in Newtonian
and non-Newtonian fluids flowing through curved circular
tubes. Mashelkar and Venkatasubramanian [30] have exam-
ined the phenomenon under low Dean number (NDe < 20)
conditions where the influence of secondary flow is not ex-
pected to have significant contribution. To overcome the lim-
itation of small Dean numbers, the influence of secondary
flow in convective diffusion with reaction in Newtonian and
non-Newtonian fluids flowing through coiled tubes is ana-
lyzed numerically for higher values of Dean number (NDe ≈
250). The present analysis illustrates the interaction between
the shear thinning property of the fluid, the process parame-
ters governing the secondary flow and the reaction parameter
itself.

2. Hydrodynamics in coiled tubes

In order to obtain the solution of convective diffusion
with reaction in a coiled tube, the details of the hydrody-
namics need to be understood. Dean [31,32] showed that a
single dynamic similarity parameter Dean number (NDe =
NRe

√
a/b, whereNRe is Reynolds number anda andb are

the radius of the tube and curvature, respectively) can char-
acterize the flow phenomenon of Newtonian fluid in a coiled
tube. A comprehensive review of hydrodynamics of New-
tonian fluids flowing through coiled tube was published by
Berger et al. [33], Ito [41,42] and Berger [34]. Most of the
studies are confined to Newtonian fluids, very little attention
has been paid to the flow of now-Newtonian fluids in curved
circular tubes despite their importance in the area of poly-
mer, biomedical and biochemical processing. A state-of-art
review on the flow of power law fluids flowing through circu-
lar curved tube has been reported by Agrawal et al. [27,28].

3. Mathematical formulation

In order to obtain an exact solution of the convective dif-
fusion equation with reaction in coiled tubes, the equations
of continuity, momentum and mass need to be solved. The
equation of continuity and motion for Newtonian and power
law fluid flowing through curved circular tube have been
solved numerically by Agrawal et al. [27,28]. These results
are then used to solve the convective diffusion equation for
determining the concentration profiles along the length of
the coiled tube as chemical reactor.

A systematic representation of a curved tube and its coor-
dinate system is shown in Fig. 1. The toroidal geometry is a
good approximation for helically coiled tubes with a small
pitch. As shown in Fig. 1,a is the radius of the tube andb
the radius of curvature of the coil. The flow occurs in the in-
creasingφ direction. The velocity vectorV has components
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Fig. 1. Toroidal coordinate system.

U, V, W in theR, θ andφ directions, respectively. The study
of the phenomenon of convective diffusion with reaction in
a coiled tube for steady, fully developed flow of incompress-
ible Newtonian and non-Newtonian fluids has been carried
out under the assumption axial diffusion is neglected [35].

The convective diffusion equation for first order reaction
in the toroidal coordinate system is

U
∂C

∂R
+ V

R

∂C

∂θ
+ W

b + R sinθ

∂C

∂φ

= Dm

{
1

R

∂

∂R

[
R
∂C

∂R

]
+ sinθ

b + R sinθ

∂C

∂R
+ 1

R2

∂2C

∂θ2

+ cosθ

R(b + R sinθ)

∂C

∂θ

}
− KC (1)

Eq. (1) in nondimensionalized using the following groups:

c = C

C0
, r = R

a
, u, v,w = U,V,W

(ρan/µp)1/(n−2)
(2)

The dimensionless form of the governing equation is

u
∂c

∂r
+ v

r

∂c

∂θ
+ λ−1

δ

∂c

∂φ

= 1

NSc

[
∂2c

∂r2
+ 1

r2

∂2c

∂θ2
+ 1

r

∂c

∂r
+ δ1

∂c

∂r
+ δ2

r

∂c

∂θ

]

− α

NSc
c (3)

whereλ = b/a (curvature ratio)

δ = λ−1r sinθ + 1

δ1 = λ−1 sinθ

δ

δ2 = λ−1 cosθ + δ

NSc = a

Dm

[
ρan

µp

]1/(n−2)

α = Ka2

Dm

(4)

Eq. (3) is subject to the following boundary and initial con-
ditions:

Φ = 0, c = 1
∂c

∂θ

(
r,±π

2

)
= 0

∂c

∂r
(1, θ) = 0

∂c

∂r
(0,0) = 0

(5)

4. Method of solution

Eq. (3) together with then associated boundary and initial
conditions (Eq. (5)) represented a complete mathematical
description of the problem. The Eq. (3) is somewhat analo-
gous to the two-dimensional unsteady state heat conduction
equation and an alternating direction implicit (ADI) method
has been applied. Details of ADI method are available in
the original paper of Douglas and Gunn [36] and Peaceman
and Rachford [37]. This technique retains the accuracy of
the well known Crank Nicolson method [38] but simpli-
fies the computation using a two-step procedure, each step
involving concentration implicitly in a single direction. In
the partial differential equation, the standard second or-
der central difference operators were used for the first and
second derivatives ofc in both the radial and angular di-
rections. The steady state values ofu, v andw for given
values of Reynolds number and curvature ratio as reported
by Agarwal et al. [28] were used in Eq. (3) to calculate the
concentration profile as a function ofφ.

The computed values of concentration,c(r, θ ) were used
to obtain the bulk average concentration for different axial
distance in the following manner.

CB =
∫ 1

0

∫ π/2
−π/2crw dr dθ∫ 1

0

∫ π/2
−π/2rw dr dθ

The numerical solution was checked by comparing it with
the results of Mashelkar and Venkatasubramanian [30]. For
NDe = 10, there was very good agreement between the two
solutions.

5. Results and discussion

The motivation behind the present theoretical analysis
was to understand the influence of secondary flow for high
Dean numbers when simultaneous diffusion and reaction
take place in a coiled tube. The numerical solutions were
computed for the range of 1< NDe ≤ 250, 1< NSc <

14000, 10≤ λ ≤ 100 and 10≤ α ≤ 1000.

5.1. Influence of process variables on bulk mean
concentration

The variation of bulk mean concentration (CB) along
the dimensionless axial distance [ξ = λφ/NReNSc] was
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Fig. 2. Variation of bulk concentration along the dimensionless length (ξ ) for different values ofα.

examined as a function of the process variablesα,NSc, NDe

andλ.
The effect of reaction parameterα on the variation of

bulk mean concentration along the dimensionless axial dis-
tance (ξ ) is shown in Fig. 2 forNDe = 250,NSc = 1400
andλ = 30. For a given value ofα, the bulk concentration
decreases with increases in axial distance. It is also evident
from Fig. 2 that with an increase inα, the bulk mean con-
centration decreases, i.e. conversion increases at a particular
axial distance. Actually, the reaction parameterα is the ra-
tio of molecular diffusion time (a2/Dm) to the reactive time
(1/k). The reaction rate increases with increases inα. There-
fore, the conversion is faster for higher values ofα.

The variation of bulk mean concentration along the di-
mensionless axial distance for different values of Dean

Fig. 3. Variation of bulk concentration along the dimensionless length (ξ ) for different values ofNDe.

number and curvature ratio for a given fluid (NSc = 1400)
and reaction parameter (α = 100) is presented in Figs. 3
and 4, respectively. It may be seen from the figures that,
for a given valueNSc andα, the variation of concentrations
along the dimensionless axial distance [ξ = λφ/NReNSc]
is independent of the value ofNDe andλ. This can be ex-
plained as follows. The dimensionless axial distanceξ is
actually a ratio of convective time (Z/Wa) to diffusion time
(a2/Dm) for a particular value of conversion. The Dean
number andλ characterize the intensity of secondary flow,
with an increase in Dean number or decrease in curvature
ratio the secondary flow increases. The axial length for
a particular conversion increases with increases in Dean
number and with decreases in curvature ratio. So the ratio
of Z/Wa for a particular conversion remains constant with
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Fig. 4. Variation of bulk concentration along the dimensionless length (ξ ) for the different values ofλ.

increases in the secondary flow. Hence, for a given fluid and
reaction parameter, the ratio of convective time and diffu-
sive time for a particular conversion does not change with
increases in secondary flow.

The effect of Schmidt number on the variation of bulk
mean concentration along the dimensionless axial distance
is shown in Fig. 5. It is clear from the figure that the variation
of bulk concentration along the dimensionless length does
not depend onNSc at given values ofα, NDe andλ. This
phenomenon can also be explained on the same logic as
discussed above. With increases in the values ofNSc, the
diffusion time increase and, hence, the length required for
a particular conversion increases for a given value ofα.
Therefore, the ratio of convective time to diffusive time for

Fig. 5. Variation of bulk concentration along the dimensionless axial distance (ξ ) for different values ofNSc.

a particular conversion remains the same at given values of
NDe, λ andα.

These are the striking results which simplified the phe-
nomenon of convective diffusion with reaction in coiled
tube for Newtonian fluids. The variation of bulk mean con-
centration along the axial length of the reactor can be sim-
ulated as a function ofα andξ . The performance of coiled
tube reactors for power law fluids has also been analyzed.
Fig. 6 shows the variation of bulk mean concentration with
dimensionless axial distance for power law indices 0.75 and
0.5 for value ofNDe = 125,NSc = 14,000, λ = 30 and
α = 100. The effect of reaction parameter on the variation
of bulk concentration with axial distance for power law
fluids is similar to the case of Newtonian fluids. The length
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Fig. 6. Variation of bulk concentration along the dimensionless distance (ξ ) for power law fluids at different values ofα.

required for a particular conversion decreases with increases
in α for the givenNDe, NSc, andλ.

The dependence of power law index on the variation of
concentration along the dimensionless axial distance (ξ ) is
shown in Fig. 7 forNDe = 125,NSc = 1.4 × 104, λ = 30
and α = 100. The conversion increases with decrease in
the power law index at a particular dimensionless axial
distance. For given values of Dean and Schmidt number,
the secondary flow decreases with increasing pseudoplas-
ticity of the fluid. The constitutive equation of power law
fluids reveals that the effect of convection become less with
increases in pseudoplasticity of the fluid and, hence, the
velocity profile becomes progressively more blunt which
causes a decrease in the intensity of secondary flow. There-
fore, the length required for a given conversion increases
with increases in the power law index.

Fig. 7. Variation of bulk concentration along the dimensionless axial distance (ξ ) for Newtonian and Power law fluids.

5.2. Comparison of coiled tube reactor with
plug and tubular flow reactor

The performance of helical coils lies between that of plug
flow and laminar flow as shown in Fig. 8. The variation of
bulk mean concentration with dimensionless axial distance
is given by the following equations for plug flow [15].

CB = C−2ξ ′
(6)

where

ξ ′ = ξα

and for tubular flow

CB = e−ξ ′
(1 − ξ ′)+ ξ ′2

∫ α

−ξ ′

e−x

x
dx
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Fig. 8. Comparison of bulk average concentration of laminar tubular, helical coil and plug flow reactors.

The variation of bulk mean concentrationCB along the
dimensionless lengthξ for coiled tube flow, plug flow and
laminar flow reactor is shown in Fig. 8 for different values of
α = 10, 100 and 1000 at Dean number of 125,NSc = 1400
andλ = 30. It is clear from Fig. 8 that the conversion ob-
tainable in a coiled tube is higher than in a straight tube but
less than that in plug flow reactor. Due to the existence of
secondary flow the mixing takes place in a cross-sectional
plane which improves the performance of coiled tube reac-
tor to a plug flow reactor. As discussed by Mashelkar and
Venkatasubramanian [30], it is also clear from Fig. 8 that the
improvement due to coding diminishes with increases inα.

6. Conclusions

The present study described a numerical solution for con-
vective diffusion with first order reaction in curved circular
tubes. Newtonian and power law fluids in the range 1<

NDe < 250, 1< NSc < 1.4 × 104, 10 < λ < 100 and
0.5 < n < 1. The following conclusion may be drawn from
the present analysis.

1. The phenomenon of convective diffusion with reaction
for Newtonian and power law fluids flowing through
curved circular tubes can be characterized by reaction pa-
rameter (α), dimensionless axial distance (ξ ) and power
law index (n).

2. The variation of bulk concentration along the dimension-
less axial distance decreases with increases in values of
α for particular values ofn, NDe, NSc, andλ.

3. The performance of coiled chemical reactor lies between
the performance of plug and laminar reactors.
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